Simulation Tools for Nondestructive Evaluation

R. Bruce Thompson
Center for Nondestructive Evaluation
Iowa State University

Outline

- Broad Technological Need
- Particular Scientific Advancement in Response to Market
- Management Factors Contributing to Success
- Summary

Outline

- Broad Technological Need
- Particular Scientific Advancement in Response to Market
- Management Factors Contributing to Success
- Summary

Background

- Prior to 1970, nondestructive testing had been conducted in an empirical fashion with limited predictive or analytical foundations
- The situation was changed by
 - A problem (unexpected military failures and concerns about the safety at nuclear power plants in the late 1960s)

C-5 engine pylon failure

Manufacturing defect leading to F-111 wing failure

- PLUS -

A tool (fracture mechanics)

Research and Development Programs Established In Quantitative NDE Around the World

- United States
 - Interdisciplinary Program for Quantitative Nondestructive Evaluation (AF/DARPA)
 - EPRI NDE Center
- Europe
 - NDT Centre (Harwell, AERE, UK)
 - IZFP (Fraunhofer, Saarbrucken, Germany)
- Asia and other regions

Evolution of the Field in the United States Driven by Major Events/Concerns

1970 Serious incidents and new energy sources spark concern

1980

Airframes

1990

Pipelines

Jet

engines

2000

Space shuttles

Major Phases in the Development of the Field

- Creating a core science base (1970s)
- Maturing the science base: window problems (1980s)
- Utilizing the science base (1990s)
 - competitiveness driven applications (reliability)
 - commercial aviation (safety)
 - infrastructure (safety)
- The implementation of the science base has been enabled by the I/UCRC which engaged major companies in the further development and application of the technology (established 1985)

Outline

- Broad Technological Need
- Particular Scientific Advancement in Response to Market
- Management Factors Contributing to Success

Simulation Tools

The continued development of physics-based models of inspection processes and their incorporation in simulation tools is one example of how the I/UCRC is making a very positive economic impact on industry.

The Role of NDE

- An enabling technology that responds to the needs of society
 - goal: greatest safety and reliability of structural and other systems at the lowest cost
- Economics is always an issue
 - how much will
 - society pay for increased public safety?
 - business/government pay for increased reliability?

Role of Simulations

- Simulation tools reduce the time and cost (samples and measurements) to perform important engineering functions such as test development and evaluation
- Simulations are playing an increasing role in the highlighted life management functions

Simulator Components

- A simulator consists of the following
 - Graphical user interface
 - Test piece geometrical representation
 - Flaw geometrical representation
 - Input signal generation
 - Signal and test piece interaction computations
 - Detector response computations
 - Post processing of synthetic data
- Both a rigorous understanding of the physics and attention to making tools user-friendly are required.

An X-Ray Example Detectability Maps

Rapidly assessing the effect of sample orientation

An Ultrasonic Example Simulation of Signal Strengths

Assessing the effects of flaw morphology

Use of UT Simulations to Understand Effects of Flaw Morphology on Signal Strength

Dimensions of B1AW2 - D:

Side 1

Model

Attenuation=18dB peak amplitude = 231 msdeviation=-34% or -3.56 dB

Experiment

Attenuation=18dB peak amplitude=348 mv

Side 3

Model

Attenuation=12dB peak amplitude=564 mv deviation=29% or 2.20 dB

Experiment

Attenuation=12dB peak amplitude=438 mv

Experiment image: 70(H) x 30(V) @10 mils

Model image: 71(H) x 31(V) @10 mik

An EC Example "Plate02"

 In order to capture their potential benefits, tools must be user friendly

A Forward Looking Example Assistance in the Design of Advanced Reactors

NERI Project: On-line NDE for integral reactor coolant system

Examples of Sponsor Usage

- A major land-based gas turbine manufacturer saved \$500K per year in avoiding the manufacture of curvature correction blocks.
- Under FAA support, a consortium of aircraft engine companies are using these tools to design the ultrasonic probes used to inspect billet and forging materials for critical defects.
- A fourth engine company is using the x-ray simulator in the screening of proposed inspection procedures, avoiding unnecessary and expensive experimental tests.

Examples of Sponsor Usage (Continued)

- One aerospace company has estimated that a particular ultrasonic application saved them \$1M in the first year alone and is investing a like amount at CNDE to develop other possibilities.
- Eddy current simulators are being used in the nuclear, aircraft engine and general aviation industries to evaluate the capabilities of wide range of

The Way Forward: Commercialization

- A small business, NDE Technologies, was formed in 1997 to commercialize the technology
 - X-ray simulation software on the market
 - Negotiations under way with respect to simulation tools for other modalities

The Way Forward: Formation of Working Group on Computational NDE for Modeling Probability of Detection

- AF, FAA, and NASA support
- Possibilities recognized
 - Replace, to a large degree, costly and time-consuming experimental programs for prediction of NDE reliability
 - Improve component design and definition of the life cycle
 - Optimize and validate NDE hardware and procedures
 - Develop and quantify improved physical calibration standards
 - Provide an NDE simulator for training and education
- Initial goal
 - To develop, validate and demonstrate a selected set of modeling capabilities with initial focus on a single technique (ultrasonics?) for NDE reliability. These modeling capabilities will be broad enough in scope to serve as a persuasive demonstration of the great value of modeling of NDE reliability.

Outline

- Broad Technological Need
- Particular Scientific Advancement in Response to Market
- Management Factors Contributing to Success
- Summary

Role of the I/UCRC Program Major Programs Enabled by I/UCRC

- Creating a core science base (1970s)
 - AF/DARPA
- Maturing the science base (1980s)
 - AF/DARPA (until 1989)
 - I/UCRC (1985 start)
 - Research, development and technology transfer
 - Development of enhanced educational materials
 - Simulation tools to empower NDE engineers to hold a full seat at the systems engineering table
 - Industrial funding of projects in response to proprietary needs

Role of the I/UCRC Program Major Programs Enabled by I/UCRC (Cont.)

- Utilizing the science base
 - NIST NDE simulation tools for design (1989-1998)
 - FAA Commercial aviation (airframes and engines) (1989-present)
 - NASA Future aerospace systems (2001present)
 - AF Military aircraft (2002-present)
 - Proprietary Programs Numerous company specific needs

CNDE

- A critical mass of scientists, engineers and students dedicated to solving the NDE problems of industry
- Benefit to industry
 - A shared, costeffective corporate research laboratory with functions of basic research, development and technology transfer
- Coupling of CNDE and Industry

CNDE sponsoring companies have:

- Opportunity to guide the directions of generic, precompetitive research that will provide the foundation for industrial technologies
 - Biannual formal Industrial Advisory Board meeting
 - More frequent informal contacts
- Immediate access to the results of that work
 - Expert advise
 - Biannual technical reviews
 - Short courses

- Outputs include
 - Inspection physics
 - New inspection concepts
 - Prototype instrumentation and software
 - Inspection simulations
 - Educational programs
 - Students
 - Early contact, internships, and potential employees
- A window to worldwide NDE advances
 - Attendance at annual meeting with proceedings
 - Personal contacts

CNDE sponsoring companies also have available:

- A partner that seeks funding when possible to further advance items of particular common interest
 - Various government programs
 - CASR and ETC (FAA)
 - Advanced Reactor Concepts (DOE)
 - Advanced Technological Education (NSF)
 - A skilled and committed team member to support applying generic results to specific company problems
 - Government funded
 - Corporate funded
 - Can work within proprietary framework

Role of Different Funding Sources in Satisfying Sponsor Needs

Outline

- Broad Technological Need
- Particular Scientific Advancement in Response to Market
- Management Factors Contributing to Success
- Summary

Summary

- Technological need
 - Nondestructive techniques to provide quantitative flaw information
- Scientific advance
 - Simulation tools incorporating forefront understanding of measurement physics in user-friendly formats
- Economic motivation
 - Reduce time and cost of empirical approaches
- Management keys
 - I/U CRC provides a focal point for industry to pool resources and guide the developments so that they will have the greatest impact